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ABSTRACT

Name: Abdalla R. Sherif 

Date of Degree: August 10, 2018 

Institution: Mississippi State University 

Major Field: Geospatial Sciences 

Committee: Qingmin Meng, Shrinidhi S. Ambinakudige, and Nathaniel J. Gabriel 

Title of Study: Urban landscape assessment of the Mississippi and Alabama Gulf Coast 

using Landsat imagery 1973-2015 

Pages in Study 67 

Candidate for Degree of Master of Science 

This study aims to conduct an assessment of the land cover change of the 

Mississippi and Alabama coastal region, an integral part of the Gulf Coast ecological 

makeup. Landsat satellite data were used to perform a supervised classification using the 

imagery captured by Landsat sensors including Landsat 1-2 Multispectral Scanner 

(MSS), Landsat 4-5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper 

(ETM+), and Landsat 8 Operational Land Imager (OLI) from 1973 to 2015. The 

objective of this study is to build a long-term assessment of urban development and land 

cover change over the past four decades for the Alabama and Mississippi Gulf Coast and 

to characterize these changes using Landscape Metrics (LM). The findings of this study 

indicate that the urban land cover doubled in size between 1973 and 2015. This 

expansion was accompanied by a high degree of urban fragmentation during the first half 

of the study period and then a gradual leveling off. Local, state, and federal authorities 

can use the results of this study to build mitigation plans, coastal development planning, 

and serve as the primary evaluation of the current urban development for city planners, 
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environmental advocates, and community leaders to reduce degradation for this 

environmentally sensitive coastal region. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

The Gulf Coast represents a valuable environmental and economic resource for 

the Southeastern region of the United States. It hosts a variety of major industries such as 

agriculture, forestry (Li and Meng, 2016), tourism (Ha, 2007), petroleum, petrochemical 

(Tipsword et al., 1966), seafood, shipping, and shipbuilding industries (Zhang et al., 

2015). The variety of business districts and urban population centers within this region 

makes the coastal counties vital to the economies of Mississippi and Alabama (Crossett et 

al., 2004; Zhang et al., 2015). The Gulfport-Biloxi-Pascagoula Metropolitan area and the 

Mobile Metropolitan area are located in the study area (U.S. Census Bureau, 2011). This 

area experiences a higher urban development rate, and it has a 50% higher population 

growth than the rest of the region. Consequently, this growing population leads to an 

increasing development along coastal lines (Crossett et al., 2004). Increased 

environmental degradation and coastal pollution are directly linked to anthropogenic 

activities through urbanization and development near coastal areas (Creel, 2003). Reports 

from the Intergovernmental Panel on Climate Change (IPCC, 2007) indicate that coastal 

zones are some of the primary areas that will be impacted by climate change and 

environmental degradation (Anthony et al., 2009; Dolan and Walker, 2006; IPCC, 2007). 

In recent decades the Gulf Coast region has experienced an increase in the frequency of 

1 
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natural disasters that are linked to global warming, sea level rise, and climate change 

(Twilley et al., 2001). Consequently, these events exacerbate the negative impacts of 

environmental degradation on coastal communities. (Petterson et al., 2006). 

Similar studies have been conducted on the coastal landscape of Mississippi and 

Alabama using multi-temporal Landsat imagery. Ellis et al. (2011), investigated the Land 

Use and Land Cover (LULC) change of the Mobile Bay vicinity and their impacts on 

coastal environments, their study area consisted of Mobile and Baldwin Counties. O’Hara 

et al. (2003) conducted a LULC study from 1991 to 2000 to identify vegetation patterns 

and seasonal variability to improve the identification of urban land cover along the 

Mississippi Gulf Coast. 

Although this study takes a similar approach to previous studies conducted in this 

region for classification methodology, I will use Landscape Metrics to enhance our 

understanding of the urban landscape development of this region and to better 

characterize the land cover change detection. Furthermore, I will use the landscape 

metrics to perform a comparative analysis of urban land cover between the five counties 

in the Gulf Coast region of Mississippi and Alabama. 

1.2 Study Area 

The study area consists of five coastal counties: Hancock, Harrison, and Jackson 

of Mississippi; and Mobile and Baldwin of Alabama. The area lies between 31.3o and 

30.2o latitude, and -88.4o and -89.3o longitude (Fig. 1.1). The physical terrain of the study 

area is characterized by a coastal landscape that has a variety of wetlands including 

marshes and swamps that are adjacent to the coast. These wetlands extend inland along 

streams and rivers that are connected by watersheds and estuaries that drain into the Gulf 

2 
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of Mexico. Coastal Mississippi is situated in the Pine Hills Physiographic Division and 

the Mississippi Delta Province of the Louisianian Biogeographic Region. It is 

characterized by Pine Hills areas that are typical of upland plains. These areas are 

dissected by streams forming regions of slopes (Oivanki, 1998). The Coastal Alabama 

lies within the East Gulf Coastal Plain Ecoregion and the Louisianan Marine Province. 

The U.S. Forest Service classifies the region as representing the Coastal Plains and 

Flatwoods within the Subtropical Division of the Humid Temperate Domain (Bailey et 

al., 1994). These physiographic and geomorphologic features create an environment that 

is very complex, sensitive and rich with biodiversity (Ennis et al., 2014). 

In this study, 10 scenes for 8 different time periods were acquired to perform 

classifications (Table 3.1). Due to inconsistencies of Landsat imagery positions over 4 

decades, the study area had to be trimmed to include the intersection of all the scenes 

used for this study. The result of this process is that 26% of Hancock County, 10% of 

Mobile County and 43% of Baldwin County are not included in the study results. 

However, this does not affect the overall results due to the consistent size of the study 

area. Fig. 1.1 is a map of the study area. 

3 
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Figure 1.1 Map of Study Area 

Hancock, Harrison, and Jackson Counties of Mississippi; and Mobile and Baldwin 

Counties of Alabama 

1.3 Objectives 

The objectives of this study are to provide a general thematic landscape change 

assessment of the lower counties of Mississippi: Jackson, Harrison, and Hancock and the 

lower counties of Alabama: Mobile and Baldwin. The outputs of this study also include 

long-term LULC maps for the years 1973, 1980, 1986, 1995, 2000, 2005, 2010, and 2015 

4 
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for each county. Additionally, landscape metrics were used to assess the urban 

development for each county throughout the time period of the study. 

1.4 Thesis Organization 

This study is organized into five chapters. Chapter I is the introductory chapter 

which provides an overview of contents and the scope of the study. Chapter II is a 

literature review of the topics covered in this paper, which includes remote sensing and 

GIS, land cover change science and landscape metrics. Chapter III contains the 

methodologies used in this study and is divided into four sections: data acquisition, 

classification, change detection, and landscape metrics. Chapter IV contains the final 

results of the study which includes a comparison of the accuracies of three supervised 

classification methods, an overall accuracy assessment for all the classified images, 

change detection confusion matrices, urban landscape metrics assessments, and the time 

series of the classified images for each county. Chapter V is the conclusion and 

summaries of the result of the overall assessment of the land cover change and urban 

development for the study area in the past four decades. 

5 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Remote Sensing and Geographic Information Systems 

Remote sensing is defined as the process of collecting information about the 

physical properties of objects based on the reflected or emitted electromagnetic radiation 

without coming into direct contact with it (Davis and Swain, 1978 p. 1). Colwell (1966) 

also defined remote sensing as “reconnaissance at a distance,” referring to the way 

remote sensing is often used in the process of monitoring natural and anthropogenic 

processes on the Earth’s surface over time. Information can be derived from remote 

sensing data that is collected by a variety of different sensors. These sensors are used to 

measure the reflected or emitted light (electromagnetic energy) in specific ranges of the 

electromagnetic spectrum (bands) from target areas in a specific field of view. Objects of 

interest such as vegetation, soil, buildings, or water bodies often exhibit a specific 

spectral profile detected by the different bands. These bands cover different wavelengths 

which include visible light, near infrared, microwaves, and radio waves (Jensen and 

Cowen, 1999). 

Sensors on board earth-orbiting satellites became popular beginning in the 1960s. 

Advances in the space rockets and image capturing technology made it possible to launch 

space-born sensors on board a variety of satellites for military and civilian purposes 

(Williamson, 1997). Satellite remote sensors are used in monitoring natural processes in 

6 
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earth systems such as weather and atmospheric interactions, ocean surface temperatures, 

phenology, and biogeochemistry (Lipp et al., 2001; Weng, 2002). Similarly, remote 

sensing is used to monitor human-environment systems such as urban development, 

climate change, and environmental pollution (Kolios and Stylios, 2013). Early satellite 

sensors were limited in their spectral and spatial resolutions and thus had limited 

capabilities due to their relatively small computational power along with the difficulty of 

transmitting and storing the large amount of data required by earth observation satellite 

(Jensen, 1986; Wulder et al., 2012). 

In the early days of satellite remote sensing, sensors had low spatial resolution, 

such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced 

Very High Resolution Radiometer (AVHRR), that were ideal for covering large areas 

with uniform land cover distribution (Lhermitte et al., 2008). By the 1970s, NASA 

introduced the Earth Resources Technology Satellite, which was eventually renamed the 

Landsat program and later operated by the United States Geological Survey (USGS) 

(Lauer et al., 1997). The Landsat satellite program had three significant impacts on 

remote sensing science. The first and immediate impact was that it provided the first 

systematic observation of Earth’s land surfaces over an extended period of time. Next, it 

propagated interest in the digital analysis of remote sensing data in the broader natural 

science community due to its standard data format and accessibility through online 

databases that are available to the public free of charge. Thus, accelerating the 

development of new data processing methods and software packages to process the large 

amount of data available. Finally, the Landsat program served as a template for different 

7 
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governmental and non-governmental organizations around the world to launch more 

Earth-observing satellites (Campbell and Wynne, 2011). 

The first generation of the Landsat earth observatory satellites; Landsat 1, Landsat 

2, and Landsat 3 all had the Multispectral Scanner (MSS) sensor with a 60 m spatial 

resolution and 4 spectral bands which included Green, Red, and 2 NIR bands. Landsat 

Thematic Mapper (TM) sensor was carried onboard Landsat 4 and Landsat 5 which had 

30 m spatial resolution and 6 spectral bands (Blue, Green, Red, NIR, SWIR1, SWIR2) 

and 1 thermal band with 120 m spatial resolution. The Enhanced Thematic Mapper Plus 

(ETM+) sensor was carried on Landsat 7 which had the same 6 spectral and 1 thermal 

band as the TM sensor, but it also included a panchromatic band with 15 m resolution. In 

2003, the ETM+ sensor onboard Landsat 7 experienced a malfunction in its Scan Line 

Corrector (SLC) which resulted in wedge-shaped omissions in the delivered images and 

significantly affected the quality of the data (Storey et al., 2005). Consequently, Landsat 

5’s operational life was extended to continue the acquisition of data for a continuous 

earth observatory data archive (Lauer et al., 1997; Wulder et al., 2012). Landsat 8 carried 

the Operational Land Imager (OLI) sensor, which had 11 spectral bands in total. Of the 

11 bands, 9 bands have a spatial resolution of 30 meters, bands 1 to 7 (Ultra Blue, Blue, 

Green, Red, NIR, SWIR1, SWIR2) and band 9 (Cirrus). Landsat 8 also had a 

panchromatic band (band 8) which has a 15 m resolution, and a Thermal Infrared Sensor 

(TIRS) with 2 Thermal bands, band 10 and 11 that are 100 m resolution (Roy et al., 

2014). 

Geographic Information Systems (GIS) is a computer system for capturing, 

storing, analyzing, and displaying geospatial data. Geospatial data is a type of data which 

8 
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has descriptive (attributes) and locational (geographic) information (Chang, 2006). 

Another way to interpreted GIS is GIScience, which is the science of “the development 

and use of theories, methods, technologies, and data for understanding geographic 

processes, relationships, and patterns” (Duckham et al., 2004). Application of GIS 

methods and tools are used in many different research fields such as natural resource 

management, forestry, wildlife ecology, meteorology, environmental analysis and 

monitoring, landscape analysis, temporal land cover change detection, urban planning, 

transportation, public health, political and demographic distribution, and many more. 

Spatial data within GIS systems fundamentally changed the way scientist and 

professionals look at recorded information. The combination of spatial information data 

(location) and nonspatial-attribute (or descriptive) data makes it possible to visualize and 

interpret digital data to answer relevant questions and derive useful information from 

existing sources. The improvements in the capability of remote sensing and GIS systems 

are due to the increasing capacity of digital storage and processing power, and the 

enhancements in optical sensor technology. GIS and remote sensing provided tools and 

methodologies that can be used to augment and further increase the reach of scientific 

research. Therefore, GIS and remote sensing receive increasing interest from the 

scientific community, especially within the natural sciences (Turner et al., 2008). The 

combination of the cost-effective multispectral and multi-temporal data that is collected 

by remote sensors and the strong analyzing, storing, and displaying of digital data in the 

flexible environment of GIS can be a potent tool when used in the correct context 

(Crossett et al., 2004). 

9 
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2.2 Land Cover Change Science 

Land cover change science is an extensive research field that is in the business of 

understanding and monitoring the global system, land cover, and land use using remote 

sensing technologies (Samek et al., 2012). Studying ecosystems and anthropogenic 

effects on the environment became the central points of land cover science. From within 

this interest, the multidisciplinary research field of LULC science was born (Turner et al., 

2008). LULC science attracts a variety of scientists from a variety of research fields 

which include remote sensing/GIS, signal engineers, natural sciences, political ecology, 

landscape ecology, resource economics, biogeography, forestry, social scientists and 

many more (Gutman et al., 2004; Riebsame et al., 1994; Turner et al., 2008). The primary 

goals of LULC science are to 1) monitoring land change throughout the world 2) 

modeling of land change, 3) understanding change as a coupled environmental-human 

element, and 4) evaluation of land sustainability, vulnerability, and resilience (Turner et 

al., 2008). 

The advancement of remote sensing and the increased capacity and computational 

power of GIS contributed to the development of classification and change detection 

methods (Jensen, 2005). This advancement and availability of land imagery made it 

possible to conduct many LULC studies across the globe. Consequently, the need was 

crucial for a universal classification standard to make the finding of different research 

results usable across different fields. In 1976, the USGS published the first standardized 

LULC classification system in a professional document titled Land Use and Land Cover 

Classification System for Use with Remote Sensor Data. The document highlights three 

levels of land classification systems [level: I, II, III]. Each higher level is more specific 

10 
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and has a higher number of land classifications than the previous one. This classification 

system became commonly known by its author’s name, the Anderson land classification 

system (Anderson et al., 1976). 

Researchers use a variety of different classification methods to identify LULC 

classes, the choice of classification methods depends on few factors. The subject of the 

research, the study area, availability of data, cost, and time constraints are few of the 

elements to have in mind when conducting a LULC research study (Weng, 2012). 

Classification methods fall under three general criteria: training samples, data 

distribution, and per-pixel (hard) or subpixel (soft) classification (D. Lu and Weng, 

2007). Supervised classification methods use training sites to determine the spectral 

signature of each class. Training sites are locations of pixels with known land cover 

classes. The classification of each pixel is obtained through manual input using a digital 

pin in a GIS program. These points are referenced using aerial imagery, high-resolution 

satellite imagery, or field observations (Rogan and Chen, 2004). Supervised classifiers 

combine the spectral signature of all the training pixels that are assigned to each class to 

produce a combined signature. Great care is exercised to use training pixels that are 

representative of one class only to derive an accurate signature (D. Lu and Weng, 2007). 

The second criterion is data distribution. Parametric distribution assumes that the 

parameters (mean vector and covariance matrix) has a Gaussian distribution. One major 

drawback of parametric classifiers is the difficulty of integrating non-statistical 

information such as census data or elevation data, an example of a parametric classifier is 

the Maximum Likelihood Classifier (MLC) (Weng, 2012). Non-parametric classifiers 

make no assumption about the data distribution and therefore tend to have higher 

11 
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accuracy due to the complexity of the parameters of most satellite data. (D. Lu and Weng, 

2007; Paola and Schowengerdt, 1995). Some of the most popular non-parametric 

classifiers are Artificial Neural Networks (ANNs), Support Vector Machine (SVM), and 

Expert Systems (ES) (Weng, 2012). 

Classification of satellite imagery is dependent on the quality of data and the 

specification of the sensors used to obtain that data. Spatial, spectral, and temporal 

resolution determine the amount of information that can be extracted from satellite 

imagery (Weng, 2012). Spatial resolution refers to the area one pixel covers on the 

ground, and it dictates the measurement of the smallest object that can be detected. To 

accurately detect an object using remote sensors, the spatial resolution must be at least 

one-half of the diameter of the smallest object to be detected (Jensen and Cowen, 1999). 

Spectral resolution is the number and the range of electromagnetic bands used by the 

sensor. Higher spectral resolution is required to identify different types of urban land 

cover due to the similarity in the materials and surfaces (Macleod and Congalton, 1998; 

Weng, 2012). Visible light (VIS), Near Infrared (NIR), Medium Infrared (MIR), and 

Panchromatic are all types of spectral resolutions that enable image analysts to discern 

between different types of materials and land surfaces with greater accuracy (Rogan and 

Chen, 2004). Temporal resolution refers to the amount of time it takes for the satellite to 

revisit the same spot on earth. Temporal resolution is essential for LULC change 

detection. The higher temporal resolution allows for a higher amount of data acquisition 

in the same geographic area, and it provides a better chance of acquiring imagery with a 

low amount of cloud cover (Lu et al., 2008). 

12 
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Change detection methods are used to quantify the amount and type of change in 

the satellite imagery with two or more intervals. Post-Classification Processing (PCP), 

Image Differencing (ID), Principle Component Analysis (PCA), and Change Vector 

Analysis (CVA) are some of the popular change detection methods used in the literature 

(Coppin et al., 2004; Macleod and Congalton, 1998; Yu et al., 2012). PCP is a 

straightforward change detection method to implement and understand. It requires a 

before and an after classified image, next it assigns each pixel a new value by comparing 

the class of pixel from the first image to the class of the same pixel from the second 

image, and it creates a new raster dataset with “from-to” classes (e.g., from Forest to 

Urban). Image differentiation (ID) does not rely on pre-classifier imagery; it performs 

change detection by subtracting value from one band in the first image from the value of 

the same band in the second image. The result is a “from-to” raster with unchanged pixels 

set to zero. One disadvantage of ID is the difficulty of deriving the change detection 

matrix from the resulting raster data. Principle Component Analysis (PCA) method uses a 

confusion matrix to plot the first image against the second image with rows and columns 

having a change and no change sections. Change vector analysis (CVA) involves using 

two components: change of direction and change of magnitude. The change in direction 

is calculated using angular vectors, and the magnitude is calculated using Euclidian 

distance (Malila, 1980). 

Recent approaches to classification of remote sensing imagery involve the use of 

machine learning techniques based on domain adaptation (DA) and transfer learning 

procedures. DA methods focus on using existing derived signatures to classify newly 

acquired imagery that has different acquisition conditions, which include different 

13 
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sensors (number of bands, spatial resolution), different acquisition time period (sun angle 

and luminosity), or different geographical area. DA methods address the issue of 

collecting accurate and consistent classification signatures and ground truth data for each 

image, which is often time-consuming and expensive and is considered one of the biggest 

problems of supervised image classification (Tuia et al., 2016). 

Similar LULC studies have been conducted in the Gulf Coast of Mississippi and 

Alabama. Ellis et al. (2011) studied the LULC change of the Mobile Bay vicinity and 

their impacts on coastal environments. Their study area consisted of Mobile and Baldwin 

Counties of Alabama. They found that the urban land cover increased by 7% between 

1974 and 2008 and in the same period the upland herbaceous land cover decreased by 

350 km2. The result of their study was incorporated in the coastal conservation efforts by 

the Mobile National Estuary Program. O’Hara et al. (2003) conducted a LULC study to 

identify vegetation patterns and seasonal variability to improve the identification of urban 

land cover along the Mississippi Gulf Coast. Using Landsat imagery, they identified 

spectral changes between leaf-off and leaf-on variations to develop formal classification 

rules based on thematic-change logic tables. The result of their study is an increase in 

classification accuracy of more than 90% and a robust method to identify low-density 

urban development that can be difficult to detect due to the dense vegetation cover. 

2.3 Landscape Metrics 

Landscape metrics are a set of numeric measurements that quantify the spatial 

patterns of landscape compositions and configurations, which can be linked to ecological 

and anthropogenic processes. The application of landscape metrics has its origins in 

landscape ecology, with species-centric thinking as the phenomenon to be modeled. 
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Quantifying habitat fragmentation and understanding spatial patterns of population 

dynamics on small and large scales. (Ji et al., 2006). 

Landscape metrics are calculated on the patch, class, and landscape level. A 

fundamental element of landscape metrics is that all landscapes are composed of a 

mosaic of patches (Urban and Shugart, 1987). A patch is a single unit of space that is 

defined by the phenomenon under investigation and can be described as a relatively 

homogeneous environmental condition where discontinuities distinguish the patch 

borders in the landscape relative to the phenomenon under investigation. Class (patch 

type) metrics are the statistical characteristics of all patches within a single class. These 

statistical characteristics describe first-order and second-order statistics such as area-

weighted mean, median, range, standard deviation, or coefficient of variation. Landscape 

metrics describe similar statistics to class metrics but over the entire study area 

(Mcgarigal, 2001). 

Landscape composition refers to several types of metrics which include the 

proportion of the landscape in each patch type, patch richness, patch evenness, and patch 

diversity. Landscape configuration refers to the physical distribution or spatial character 

of patches within the landscape. Some aspects of configuration, such as patch isolation or 

patch contagion, are measures of the placement of patch types relative to other patch 

types, the landscape boundary, or other features of interest. Other aspects of 

configuration, such as shape and core area, are measures of the spatial character of the 

patches (Mcgarigal, 2001). 

Fragstats is a public domain computer program used in calculating landscape 

metrics and analysis of the distribution of spatial phenomenon from raster and vector 
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data. The program was developed at Oregon State University with collaborations from 

different academic and government organizations. A technical paper published by 

Fragstats authors describes the program and its capabilities in detail (McGarial and 

Marks, 1995). 

Studies have been conducted using landscape metrics to quantify urban sprawl 

and develop cause and effect of the urbanization processes. Ji et al. (2006) used landscape 

metric to explore the general trends of urban sprawl of the Kansas City metropolitan area 

during the past 3 decades using classified Landsat imagery. They analyzed landscape 

metrics across several jurisdictions, metropolitan, county, and city and found that the city 

area scale is too narrow to describe the general trends of urban sprawl and found that the 

metropolitan area scale is too large. The county scale has a variety of different land 

covers and usually has a central urban core that can be characterized by patch density 

metrics. They also devised land consumption indices that identified observed increase in 

urban land cover to the increase in residential and commercial construction as the main 

driving forces for urban sprawl. 

Herold et al. (2002), used landscape metrics to describe the urban structure that 

resulted from the land cover change based on mapped and classified aerial imagery of 

Santa Barbra, California. The result of their study shows that the landscape metrics can 

be useful in characterizing and segmenting homogenous regions of the urban land cover 

into different density types and land use types, which is often very difficult to do when 

looking at high-density urban environments. 
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CHAPTER III 

METHODOLOGY 

3.1 Data Acquisition 

Landsat data is available through the USGS data repository EarthExplorer 

(USGS, 2017a) and it was the primary data source in this study. EarthExplorer provides 

users with the ability to search, view, and order a variety of satellite imagery, aerial 

photography, and cartographic products, most of which are free of charge. EarthExplorer 

tools provide users with the ability to specify a location, date (start/end), cloud cover, and 

datasets. Location is expressed using addresses, path/row, coordinates, or an area drawn 

manually on a reference map. The search query can be set with a start and an end date. 

Similarly, it can also be specified by one month with multiple years. EarthExplorer also 

provides an advanced search method to refine satellite imagery by the percentage of the 

area covered by clouds (Turner et al., 2008). Cloud cover on satellite imagery can result 

in erroneous outcomes due to the introduction of the cloud molecules’ spectral signature 

in the pixels, which can result in a misrepresentation of the pixel classification (Zhang et 

al., 2002). 

Landsat satellite series provide an unprecedented archive of earth surface land 

imagery with medium spatial resolution, and it has a 16-day revisit time. Therefore, 

Landsat imagery is ideal for conducting research on LULC detection and time series 

analysis. The availability of such large amounts of data and the ease of acquiring it 
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contributed significantly to the LULC science (Roy et al., 2014). In this study, 10 scenes 

for 8 different time periods are acquired to perform classifications (Table 3.1). The 

Landsat scenes acquired for this study are split into two categories: Multispectral Scanner 

(MSS) scenes and non-MSS scenes. Landsat 1, 2, and 3 (MSS scenes) use World Wide 

Reference System WRS-1 (Fig. 3.1) and Landsat 4, 5, 7, and 8 use WRS-2 (Fig. 3.2). 

WRS divides the Earth surface area observable by Landsat satellites into a grid of 

rectangles with an area of approximately 32,000 km2 or 1.5 degrees by 1.5 degrees 

(Arvidson et al., 2006). Due to misalignment of WRS*1 and WRS-2, 2 scenes per year 

for the MSS scenes were used (path/row 022/039 & 023/039) and just 1 scene per year 

for the non-MSS scenes (path/row 021/039) to cover the study area. The MSS senses are 

classified separately and then mosaicked post classification to avoid misclassification by 

using the same signature for two different scenes. To avoid leaf-on leaf-off spectral 

inconsistencies, only scenes from the leaf-off season were used (October to February). 

Given the region’s subtropical climate, the summertime has frequent cloud cover which 

can result in clouds covering the study area rendering the image unusable. 

Table 3.1 Landsat Multispectral Image Data Acquired 

Date Satellite Sensor Spatial Resolution Path/Row # Bands 

Oct. 30 1973 Landsat 1 MSS 60 m 022/039 4 

Dec. 03 1973 Landsat 2 MSS 60 m 023/039 4 

Oct. 29 1979 Landsat 2 MSS 60 m 022/039 4 

Nov. 08 1980 Landsat 2 MSS 60 m 023/039 4 

Jan. 31 1986 Landsat 5 TM 30 m 021/039 7 

Oct. 17 1995 Landsat 5 TM 30 m 021/039 7 

Oct. 28 2000 Landsat 7 ETM+ 30 m 021/039 8 

Oct. 18 2005 Landsat 5 TM 30 m 021/039 7 

Oct. 16 2010 Landsat 5 TM 30 m 021/039 7 

Oct. 14 2015 Landsat 8 OLI 30 m 021/039 11 
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Figure 3.1 MSS scenes using WRS-1 reference system 

Figure 3.2 Non-MSS scenes using WRS-2 reference system 
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3.1.2 Preprocessing 

Landsat MSS scenes were atmospherically corrected using Dark Object 

Subtraction (DOS) method. DOS assumes the existence of completely dark objects in a 

multispectral image, and it subtracts the value of the pixel with the lowest brightness 

value from the entire image and attributing the atmospheric effects to that value (Chavez, 

1989). Finally, after the atmospheric correction was completed, the MSS bands were 

stacked from each scene to form a multi-band rasters to facilitate the classification 

process.  

Landsat level-2 Surface Reflectance data products were used for the non-MSS 

scenes. These images are produced by the Earth Resources Observation Sciences (EROS) 

Center using their Ecosystem Disturbance Adaptive Processing System (LEDAPS). This 

specialized program produces atmospherically corrected images by applying Moderate 

Resolution Imaging Spectroradiometer (MODIS) atmospheric correction routines to 

Landsat scenes. The result of this process includes Surface Reflectance (SR), Top of 

Atmosphere (TOA) and several other quality assessment products (USGS, 2017b). 

To ensure proper and accurate change detection results, all scenes were resampled 

to 30-meter spatial resolution and geometrically co-registered to the 2015 scene using 

ArcMap Georeferencing tool. RMS errors from the Ground Control Points (GCP) in the 

Georeferencing process were kept at less than 0.004meters for all scenes corrected. Next, 

visual inspection was performed by masking out irregularities such as cloud cover, cloud 

shadows, striping or bad lines that might return false classification. Finally, all scenes 

were clipped to the study area boundaries to reduce rendering and processing time. 
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3.2 Classification 

By studying the area and performing several unsupervised classifications, the 

classification scheme used in this study contains 7 classes derived from a modified 

version of the Anderson level I classification scheme (Anderson et al., 1976). The classes 

include the following categories: Built-up/Urban, Agriculture, Forest, Rangelands, 

Marshes, Barren, and Water. The urban class represents anthropogenic landscapes which 

consist of residential areas, commercial districts and industrial parks, highways, and 

transportation hubs; the agriculture class includes open pasture and cultivated crops; the 

forest class includes deciduous, evergreen, mixed forests, and woody wetlands; the 

rangeland class includes scrub, grasslands, and forests in early stages of development; the 

marshes class consist of wetlands with low-density vegetation; the barren class includes 

beaches, strip mines, gravel pits or any areas with bare soil; the water class includes all 

bodies of waters such as oceans, lakes, and rivers. To make the classifications 

understandable and familiar, the colors of the classes are similar to the legend used in the 

National Land Cover Data (NLCD) (Homer et al., 2007). 

3.2.1 Signature Training 

Several supervised classification methods were tested to determine which would 

be the most appropriate for the parameters of this study. Supervised classification is 

performed by selecting user-identified pixels or a group of pixels and developing the 

spectral histogram from all the bands in the composite image; this histogram is then used 

to derive a signature. A robust signature for each class is calculated by combining the 

signatures of multiple training sites that are distributed across the image. This process is 

conducted by using two commercial GIS software, Erdas Imagine, and Esri ArcMap. The 
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signatures for each classification were derived using a stratified random approach by 

overlaying a 20 km2 grid over the image and selecting training sites in each grid box for 

each class. We found this method to be quite useful in ensuring proper distribution of 

training sites over the entire image. However, this method of distribution may have some 

bias in urban classes because they tend to be concentrated in specific areas and some 

grids did not have any urban class cover. In such cases, the placing of two or more 

training areas in the grid adjacent to the empty grid was implemented. Li et al. (2015), in 

their long-term LULC study, used a similar number of training samples in each scene to 

reduce sampling bias in their class signature. Therefore, a similar number of pixels for 

each class in each scene was kept. 

3.2.2 Supervised Classification Methods 

Three supervised classification methods were identified as the most prominent 

classification methods used in the literature: Maximum Likelihood Classifier (MLC), 

Random Forest (RF), and Support Vector Machine (SVM). Many studies in the literature 

compared supervised classification methods (Hepner et al., 1989; Rozenstein and 

Karnieli, 2011; Singh, 2017). Maximum Likelihood Classifier (MLC) is a parametric 

supervised per-pixel (hard) classifier. It assumes the data is normally distributed and it 

uses the mean vector and covariance matrices as key input to estimate and assign each 

pixel to a specific class (Ahmad and Quegan, 2012; Rogan and Chen, 2004). Random 

Forest (RF) classifier (also called Random Trees) is a non-parametric classifier that does 

not require a priori knowledge of the data distribution. Random Forest works by 

collecting individual decision trees where each tree is generated from different samples 

and subsets of the training data so that for every pixel that is classified, a number of 
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decisions for its classification are made in rank order of importance. When graphed out it 

the graph can resemble a tree with branches and roots and offshoots. Next The data is 

recursively divided down the decision tree according to the defined classification 

framework. RF is known to be a more advance classification algorithm, but the 

classification accuracy is affected by multiple factors including pruning, boosting and 

decision thresholds (Otukei and Blaschke, 2010). The SVM supervised classification 

mothed is a non-parametric statistical that developed by machine learning research and it 

is built around the algorithm of maximizing the distance between different classes in a 

hyperplane, by increasing the distance between classes the classification insures a better 

separability between classes (Nemmour and Chibani, 2006). 

In this paper, we conducted our classification assessment using separate training 

areas and accuracy points and we found that they often produce different results 

depending on the location, data, signature acquisition technique and visual inspection. 

Therefore, three scenes were chosen to perform all three supervised classification 

methods, and they were tested by using randomly stratified accuracy points to get the 

overall accuracy and the kappa coefficient (more on accuracy in 3.2.3). After preforming 

all three classifications using the same scenes we found that SVM has the highest overall 

accuracy and kappa coefficient, see (Table 4.1). Visual inspection also shows that SVM 

had the lowest number of misclassifications. SVM classification method is also shown to 

have higher accuracy results by other comparative studies (Foody and Mathur, 2004; 

Nemmour and Chibani, 2006). 
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3.2.3 Classification Accuracy 

The number of accuracy points was calculated using the method outlined by 

Fitzpatrick-Lins, (1981) using the following equation: 

N = Z2 pq/E2, Z=2 

where N is the number of samples, Z is the generalized standard deviation value 

of 1.96 based on the two-sided confidence interval of 95 percent, p is the expected 

percent accuracy of 85 percent, q is 100 – p, and E is the allowable error. The expected 

percent accuracy, p, was based on the guidelines outlined by Anderson et al. (1976), 

which states that classification of remote sensing data must have a minimum of 85% 

accuracy. Due to the minimum field-based reference points, allowable error E was kept at 

4 percent. Using this method, the number of accuracy points for each scene N is equal to 

306 points, and the result was rounded to 300 points. The distribution of the accuracy 

points was based on equalized stratified random categorical distribution, where the 

number of accuracy points is divided equally among each class. The rationale behind this 

decision is that the study area has water bodies that make up a large percentage of the 

study area, and the urban class only represents about 5-10 percent of the study area. 

Stratified random categorical distribution is ideal because it combines the statistical 

properties of random distribution and ensures the representation of all classes in the 

accuracy matrix (Congalton, 1991; Fitzpatrick-Lins, 1981). After producing the accuracy 

points in each scene, they are verified visually using NAIP high-resolution aerial imagery 

and Digital Raster Imagery (DRI) (NRCS, 2008). Google Earth was used to verify 

accuracy points for the years where there was no aerial imagery available. NLCD LULC 

datasets were used as a reference for the scenes with the same year (Homer et al., 2004). 
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There are several methods to assess the classification accuracy. The most popular 

methods used in the literature are confusion matrices and Kappa coefficients (D. Lu and 

Weng, 2007). A confusion matrix is implemented by comparing each class with ground 

truth data; each class has a column with the number of correct and incorrect 

classifications compared against the ground truth data. Several accuracy measurements 

can be calculated from confusion matrices, which include producer’s accuracy, user’s 

accuracy, overall accuracy and the Kappa coefficient. Producer’s accuracy indicates 

errors of omission in each class, and it can be calculated by dividing the total number of 

correctly classified pixels by the number of reference pixels. The user accuracy indicates 

an error of commission, and it can be calculated by dividing the number of correctly 

classified pixels by the total number of pixels classified in that category. The overall 

accuracy is the percentage of the total sum of the correctly classified pixels in each class 

divided by the total number of pixels in the matrix (Congalton, 1991). The Kappa 

Coefficient of Agreement is a robust method that is used extensively in measuring the 

accuracy of thematic classifications. It also takes into account the agreement of error 

matrices and chance agreement. The Kappa coefficient has a range from 0-1, where 1 

indicates that classification accuracy is significantly better than random chance, and 0 

indicates that classification accuracy is equal to a chance agreement (Hudson and Ramm, 

1987; Rosenfield and Fitzpatrick-Lins, 1986). ArcMap was used to generate the 

confusion matrices to calculate the user’s accuracy and producer’s accuracy for each 

class, and the overall accuracy and the Kappa coefficient for each scene (Tables 4.1 and 

4.2). 
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3.3 Change Detection 

Given that supervised classification methods contain accuracy errors, a hybrid 

model of supervised classification and unsupervised change detection was chosen. Post-

classification change detection method is used to quantify the LULC change between 

each pair of consecutive years. The process is conducted by comparing each pixel in the 

first classified image to the pixel of the second classified image with the same location; 

this process creates a “from-to” change detection matrix. The result is then displayed in a 

matrix with one year representing the rows and the other year representing the columns. 

The diagonal of the matrix represents no change, while other cells represent the LULC 

change of different categories. 

For the unsupervised change detection, a variety of image differencing methods 

were tested to provide a change/no-change mask for each pair of time periods (Table 3.2). 

Table 3.2 Image Differing Methods used in the Unsupervised Change Detection 

Index Name Equation 

NDVI Normalized Difference Vegetation Index (NIR – Red)/(NIR + Red) 

NDWI Normalized Difference Water Index (NIR – SWIR) / (NIR + SWIR) 

NDBI Normalized Difference Built-up Index (SWIR – NIR) / (SWIR + NIR) 

RVI Ratio Vegetation Index NIR / Red 

SAD Spectral Angle Difference (Kruse et al.,1993) 

The Spectral Angle Diffrence (SAD) is a spectral change detection tool avalible 

through a comercial GIS software, ENVI under its change detection workflow. SAD 

works by detecting the difference of spectral angle between T-1 and T-2 pixels by 

measuring the angle between the vectors of the two spectra in each corresponding band 
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(Kruse et al.,1993). Using visual inspection of the original imagery, SAD combined with 

iterative threshold testing was found to give the best result for detecting the changed 

pixels. Subsequently, a change/no-change raster mask was produced for each pair of 

consecutive years in the study. This mask is then applied to a traditional post-

classification comparison where only the pixels that were identified as changed pixels are 

included in the change detection matrix. This hybrid change detection model has the 

potential to reduce misclassification errors from being reflected in the change detection 

matrix (Megahed et al., 2015). 

3.4 Urban Landscape Metrics 

Multiple landscape metrics were used to describe the change in the urban/built-up 

classification by using complementary indices. Properties of growth and spread pattern 

were calculated to compare the urban development of counties across the time scale of 

this study. This type of comparison allowed us to compare the development of urban and 

impervious surfaces change/growth between counties. This section will attempt to 

describe each index that was used and its relevance to characterizing urban landscapes. 

Table 3.2 provides a summary of these indices. 

Percentage area of landscape (PLAND) – area (ha) provides the percentage of 

each patch type (class) within the landscape. PLAND is one of the simplest landscape 

indices in that it allows for a general understanding of the proportion of each class in the 

entire landscape. Edge density (ED) index represents the sum of lengths of all edge 

segments within the patch type divided by the area total length (m), and it is measured in 

(m/ha) therefore it can be used to compare landscapes with different area sizes. Class 

Area (CA) represents the area for each class in the landscape. The Number of Patches 
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(NP) represents the number of patches for landscape or in each class; a higher NP number 

means that the patches are smaller and more fragmented, while a lower number means 

that the patches are more consolidated. Fractal dimension indices are based on perimeter-

area relationship and are often used in landscape ecological research to measure the 

complexity of patch shape within the habitat landscape (Turner and Ruscher, 1988). 

Herold et al., (2002) used the area weighted fractal dimension index (AWMPD) to 

characterize the fragmentation of urban environments by measuring the complexity of 

patch shapes in the urban classes. A newer version of Fragstat renamed this index to area-

weighted mean patch fractal dimension (FRAC_AM). Largest patch index (LPI) is the 

percentage of the landscape comprised of the single largest patch, the increase of LPI 

emphasizes the proportion growth of the total landscape area comprised of the largest 

urban patch. Euclidian Mean Nearest Neighbor Distance (ENN_MN) is the distance 

mean value over all urban patches to the nearest neighboring urban patch, based on 

shortest edge-to-edge distance from cell center to cell center. (Megahed et al., 2015). 

Figure 3.3 shows the methodology flow chart. The first step was to acquire and 

preprocess the satellite data. Next, the imagery is made into an input for two main 

processes: supervised classification and the unsupervised change detection. The 

supervised classification yields the SMA classified maps for each time period. The 

unsupervised change detection yields the change/no-change masks. The SMA classified 

maps are combined with the change/no-change masks to create the change detection 

matrices, and they are also made as an input into FRAGSTATS to derive the Landscape 

Metrics. 
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A summary of landscape metrics used in this study 

Metrics Description Units Range 

PLAND -

Percentage of 

Landscape 

equals the sum of the areas 

(m2) of all patches of the 

corresponding patch type, 

divided by total landscape 

area (m2), multiplied by 100 

Percent 0 < PLAND ≤ 100 

NP-

Number of Patches 

equals the number of patches 

of the corresponding patch 

type (class). 

None NP ≥ 1, without 

limit. 

ED - Edge density ED equals the sum of the 

lengths (m) of all edge 

segments involving the 

corresponding patch type, 

divided by the total landscape 

area (m), multiplied by 

10,000 (to convert to 

hectares). 

Meters 

per 

hectare 

ED ≤ 0, without 

limit 

FRAC_AM -

Area-weighted mean 

patch fractal 

dimension 

FRAC equals 2 times the 

logarithm of patch perimeter 

(m) divided by the logarithm 

of patch area (m); the 

perimeter is adjusted to 

correct for the raster bias in 

the perimeter. 

None 1 ≤ FRAC_AM ≤ 2 

LPI -

Largest Patch Index 

The area of the largest patch 

of the corresponding patch 

type divided by total area 

covered by urban. 

% 0 < LPI ≤ 100 

ENN_MN -

Euclidian Mean 

Nearest Neighbor 

Distance 

The distance mean value over 

all urban patches to the 

nearest neighboring urban 

patch, based on shortest edge-

to-edge distance from cell 

center to cell center. 

Meters EMN_MN > 0, no 

limit 

CONTAG-

Contagion Index 

Measures the overall 

probability that a cell of a 

patch type is adjacent to cells 

of the same type. 

% 0 < CONTAG ≤ 

100 

Landscape metrics descriptions from (McGarial and Marks, 1995) 

29 



www.manaraa.com

 

 

 

 
 

30 

F
ig

u
re

 3
.3

 
M

et
h
o
d
o
lo

g
y
 F

lo
w

 C
h
ar

t 



www.manaraa.com

 

 

 

 

 

  

  

   

  

    

 

     

      

   

  

  

   

 

 

 

 

 

CHAPTER IV 

RESULTS 

4.1 Classification Results 

4.1.1 Classification Methods Comparison 

Before choosing a supervised classification method, three methods were tested: 

Maximum Likelihood Classifier (MLC), Random Forest (RF), and Support Vector 

Machines (SVM). The accuracy tests were conducted on three different years 1973, 2000, 

and 2015. SVM had the highest accuracy values. SVM also proved to be a better 

classifier from a qualitative viewpoint, as it had significantly fewer problems with the 

“salt-and-pepper” issues, which can result in scattered patches of small sizes that are 

comprised of 1 or 2 isolated pixels. The effects of this problem need to be reduced 

because it can potentially reduce the effectiveness of patch metrics to analyze landscape 

patterns. Another factor for choosing SVM is that throughout the accuracy testing phase, 

SVM did not need as many training sites as MLC to get similar results, and it performed 

significantly faster than the RF method. 
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Table 4.1 Supervised Classification Accuracy Comparison 

MLC RF SVM 

Overall % Kappa Overall % Kappa Overall % Kappa 

1973 77.95 0.750747 74.76 0.715041 81.04 0.77446 

2000 77.51 0.742581 78.44 0.753172 87.91 0.85652 

2015 81.42 0.789303 82.016 0.79623 92.29 0.90734 

Average 78.96 0.760877 78.41 0.754814 87.08 0.84611 

4.1.2 Classification Accuracy 

The average overall accuracy for all the SVM classified maps is 85% ± 6.34, 

which according to Anderson et al. (1976) meets the accuracy requirements for LULC 

studies. During the change detection phase, 4x4 majority aggregation was used on the 

classified maps to reduce the salt-and-pepper problem. Coincidentally, post aggregation 

maps were found to have 1-3% higher accuracy than the none-aggregate maps. Given that 

the aggregate maps were used for the change detection, the accuracy figures were used 

for the aggregate maps as well. The average Kappa coefficient was 0.82 ± 0.08. These 

values indicate that all of the classified maps have classification accuracy that is better 

than random chance agreement. The scene with the highest accuracy is the 2015 scene; 

the higher accuracy may be attributed to the OLI sensor’s higher spectral and radiometric 

resolution. Although, the OLI and TM sensors have the same spatial accuracy, it was 

significantly easier to identify features in the OLI scene during the signature training 

phase that may be due to the higher radiometric resolution of OLI. The higher quality 

signatures obtained from the OLI scene maybe also contribute to its higher overall 
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accuracy. Table 4.2 shows the producer’s accuracy (errors of omission), user’s accuracy 

(errors of commission), the overall accuracy, and the Kappa coefficient for each 

classified map. 

Table 4.2 SVM Classification Accuracy 

Scene (Year) 

Average 

Producer’s 

Accuracy (%) 

Average 

User’s 

Accuracy (%) 

Overall 

Accuracy (%) 

Kappa 

coefficient 

10-30-1973 + 

12-03-1973 MSS 
82.27 80.23 81.04 0.77446 

10-26-1979 + 

11-06-1980 MSS 
83.33 80.43 81.20 0.77689 

01-31-1986 TM 87.19 87.20 87.47 0.85190 

10-17-1995 TM 83.29 83.24 83.75 0.80766 

10-28-2000 ETM+ 87.72 88.55 87.91 0.85652 

10-18-2005 TM 75.21 76.45 79.61 0.75462 

10-16-2010 TM 81.30 81.65 82.74 0.79418 

10-14-2015 OLI 91.33 91.40 92.29 0.90734 

Average 84.34 84.75 85.63 0.82870 

4.2 Change Detection Matrices 

The change detection matrices were derived by combining the raster dataset of 

each consecutive classified years and then using the change/no-change raster derived 

from the SAD as a mask for the no-change pixels. The output table of the combined 

raster is then used in a pivot operation to produce the number of changed pixels in each 

class. The number of pixels is then converted to area in km2 using this formula: 

Number of pixels * 30 meters * 30 meters * 0.000001 km2/meter2 

33 



www.manaraa.com

 

 

      

  

 

  

   

   

    

 

  

 

  

    

 

 

   

 

   

 

 

 

The diagonal values in matrix table represent the unchanged area, and they are 

derived from the supervised classification maps. The non-diagonal values represent the 

change of each class (row) into a different class (column), see Tables 4.3 to 4.9 for 

results. 

4.3 Overall Land Cover Change Assessment 

Over the last four decades, the land cover of the Gulf Coast counties of 

Mississippi and Alabama have experienced a significant change in all land cover types. 

The general trend of the percent land cover change is summarized in Table 4.10. The 

urban/built-up land cover which includes impervious surfaces doubled in size and 

resulted in an overall increase of 4.8% or approximately 660 km2 between 1973 and 2015 

with the Rangeland and Agriculture land covers absorbing most of the urban expansion. 

On the other hand, Agriculture and Rangeland land cover classes have experienced a 

decrease of 2.33% or 310 km2 and 9.2% or 1230 km2 respectively. The Marshes land 

cover changed with a decrease in area size of 1% or 140 km2. The Barren and Water land 

cover classes both remained relatively stable with a slight increase in area 0.15% or 20 

km2 and 0.5% or 60 km2 respectively. 

At the study area scale, the urban land cover increased over the past four decades 

at an average rate of 1.68% per year, and the Agriculture and Rangeland cover bore the 

majority of urbanization. Other metrics were used to describe the continuous urban 

expansion over the study period. Class Area (CA) and Number of Patches (NP) indicate a 

general uptrend with the most dramatic increase happening between 1973 and 1986, 

indicating a higher urbanization rate in the early years during that period, and rate 

declining in urban land cover thereafter. The increase of LPI emphasizes the proportion 
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growth of the total landscape area comprised of the largest urban patch. By contrast, 

ENN_MN dipped from 1973 to 1995 and then remained steady to 2015. We infer from 

this fluctuation in value that the space between urban neighborhoods is shrinking over 

time as a result of higher urbanization density. FRAC_AM climbed between 1973 and 

1986, and later it decreased sharply thereafter, which means that the level of complexity 

and fragmentation increased for the landscape patches until 1986 and then it gradually 

became less fragmented; we attribute this observation to the urban “fill-in” effect. The 

drop in CONTAG values between 1973 and 1980 may have resulted from higher 

fragmentation. However, the sharp reversal indicates the consolidation of urban patches. 

Next, we identified the landscape effects and spatial patterns of built-up land 

expansion. As a general trend, the Rangeland cover patches became more fragmented as 

a result of the increase of built-up area over the period of this study as indicated by the 

negative correlation between the Built-up/Urban PLAND and Rangeland LPI (r = -0.706, 

p < 0.05). Agriculture land cover had a smaller correlation at (r = -0.5294). There was a 

small and statistically insignificant correlation between the Forest land cover patches and 

urban expansion (r = -0.2183). Statistical analysis suggests that Rangeland aggregation 

indices had the highest negative correlation with the area of built-up land in places that 

are highly developed, indicating the increased fragmentation of Rangeland, which is a 

characteristic of urban sprawl and expansion of residential low-density establishments 

away from the urban core. Although there is a negative correlation between agriculture 

and forestland, the effect is less severe. 
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4.4 Urban Land Cover Assessment by County 

Comparing the landscape of the counties, Baldwin County was found to have the 

highest average rate of urban development at 2.35% per year, followed by Mobile County 

at 2.31% per year, Hancock County at 2.04%, Harrison County at 1.51% per year, and 

finally, Jackson County at 1.37%. The LPI and PLAND indicate that Jackson County has 

the highest level of fragmentation given by the correlation of rangelands and expansion 

of urban land cover at (r = -0.79, p < 0.01), followed by Baldwin County (r = -0.666, p < 

0.01), Mobile County (r = -0.63, p < 0.01), Harrison County (r = -0.61, p < 0.01) and 

finally Hancock County (r = -0.274). The increase of Edge density indicates the total 

length of the edge of the urban patches due to land use fragmentation (m/m2). Hancock 

County had the highest level of ED at an average of 38.47 m/m2 which supports the 

conclusion that Hancock County has the highest aggregation index (aggregation is 

opposite fragmentation). Looking at the Euclidian Nearest Neighbor Mean Distance 

(ENN_MN) index, there is no substantial difference between counties and all of them 

follow the general trend where the space between urban neighborhoods shrink over time, 

which is a result of higher urbanization density. 
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Table 4.3 2015 – 2010 Change Detection Matrix 

2010 

2015 Urban Agriculture Forest Rangeland Marshes Barren Water 

Urban 834.95 19.93 18.18 24.7 9.08 10.68 8.68 

Agriculture 7.33 524.09 14.69 41.49 0.35 2.25 0.05 

Forest 42.78 26.53 4702.51 237.76 6.69 0.36 0.26 

Rangeland 17.4 63.3 148.26 377.61 1.95 2.34 0.17 

Marshes 1.13 0.17 4.77 1.54 268.75 0.33 10.07 

Barren 1.95 3.59 2.1 1.26 0.57 45.88 3.92 

Water 0.3 0.13 0.3 0.17 5.76 5.79 3849.08 

Values represent area in km2 

Table 4.4 2010 – 2005 Change Detection Matrix 

2005 

2010 Urban Agriculture Forest Rangeland Marshes Barren Water 

Urban 854.31 6.47 43.08 51.81 31.71 4.01 1.63 

Agriculture 18.92 492.45 38.01 68.13 2.31 3.24 0.36 

Forest 22.85 3.39 4626.45 157.19 27.75 0.17 1.15 

Rangeland 18.95 38.37 152.09 469.26 19.9 1.55 0.58 

Marshes 4.01 0.33 7.02 2.71 275.11 0.5 12.93 

Barren 4.78 2.47 6.05 4.26 1.12 53.66 6.59 

Water 1.51 0.13 1.54 0.63 5.2 2.25 3886.06 

Values represent area in km2 
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Table 4.5 2005 – 2000 Change Detection Matrix 

2000 

2005 Urban Agriculture Forest Rangeland Marshes Barren Water 

Urban 673.66 15.91 56.07 20.52 3.47 4.82 1.24 

Agriculture 2.85 448.04 13.66 44.43 0.17 2.12 0.02 

Forest 8.34 14.92 4746.74 148.35 13.01 3.95 0.44 

Rangeland 21.84 44.45 279.64 425.9 6.66 4.07 0.19 

Marshes 11.43 1.22 68.31 7.68 268.45 2 2.13 

Barren 2.57 2.74 9.56 3.2 0.78 48.94 4.42 

Water 2.57 0.82 2.23 2.66 14.09 7.18 3881.47 

Values represent area in km2 

Table 4.6 2000 – 1995 Change Detection Matrix 

1995 

2000 Urban Agriculture Forest Rangeland Marshes Barren Water 

Urban 602.04 8.71 67.23 11.68 9.5 4.6 3.7 

Agriculture 25.61 563.03 58.15 44.15 10.27 3.34 1.1 

Forest 23.34 21.68 4721.22 120.11 17.25 1.63 2.27 

Rangeland 32.55 68.93 305.72 312.62 27.06 2.54 3.96 

Marshes 3.98 1.42 22.25 1.83 271.42 4.52 14.81 

Barren 8.23 4.15 12.08 4.31 2.78 49.39 5.58 

Water 0.33 0.11 1.24 0.29 6.83 55.39 3779.94 

Values represent area in km2 
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Table 4.7 1995 – 1986 Change Detection Matrix 

1986 

1995 Urban Agriculture Forest Rangeland Marshes Barren Water 

Urban 548.26 30.53 15.21 46.52 14.15 1.14 1.52 

Agriculture 14.67 613.67 15.86 53.05 4.12 3.7 0.24 

Forest 92.92 94.42 4084.09 491.67 162.21 2.18 5.06 

Rangeland 2.99 26.51 63.78 187.32 1.77 0.83 0.94 

Marshes 9.7 15.02 11.12 17.43 299.5 0.55 5.85 

Barren 1.57 0.8 3.41 0.52 2.42 38.33 3.56 

Water 2.43 0.22 1.58 0.71 8.45 2.35 3778.32 

Values represent area in km2 

Table 4.8 1980 – 1973 Change Detection Matrix 

1973 

1980 Urban Agriculture Forest Rangeland Marshes Barren Water 

Urban 279.01 21.87 39.95 33.32 4.49 0.99 1.98 

Agriculture 24.25 574.12 50.88 93.54 5.11 0.41 0.14 

Forest 3.77 3.11 3735.18 2.14 1.27 0.03 0.37 

Rangeland 10.55 16.32 154.83 1086.06 2.32 0.3 0.13 

Marshes 6.73 6.43 107.31 26.49 294.93 0.57 8.41 

Barren 9.37 4.46 4.62 5.52 0.75 41.99 12.11 

Water 4.16 0.92 6.47 1.62 19.05 8.78 3786.16 

Values represent area in km2 
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Table 4.9 2015 – 1973 Change Detection Matrix 

1973 

2015 Urban Agriculture Forest Rangeland Marshes Barren Water 

Urban 336 171.78 319.15 368.38 35.86 15.39 21.84 

Agriculture 67.22 342.14 89.03 193.75 9.69 0.83 0.31 

Forest 123.86 261.99 3989.77 1323.67 123.19 2.42 5.44 

Rangeland 76.87 217.38 371.31 382.63 35.37 2.53 1.01 

Marshes 13.6 4.76 50.13 23.69 238.17 0.49 16.09 

Barren 12.37 12.02 15.53 12.75 2.23 23.82 8.46 

Water 13.23 2.28 21.38 4.99 48.92 22.09 3774.63 

Values represent area in km2 
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4.5 Urban Landscape Metrics 

45
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Figure 4.1 Landscape metrics of the study area 

Figure (a) FRAC_AM is the Area Weighted Mean Fractal Index; (b) CONTAG is the 

Contiguity Index (%) 
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Figure 4.2 Urban/Built-Up land cover class metrics of the study area 

CA is the Class Area of built-up land cover in hectares; (b) PA is the number of patches; 

(c) LPI is the Largest Patch Index (%); (d) ENN_MN is the Euclidian Mean Nearest 

Neighbor Distance 
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Figure 4.3 Built-up/Urban class Percent Land Cover (PLAND) for each County 
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Figure 4.4 Built-up/Urban class Largest Patch Index (LPI) for each County 
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Figure 4.5 Built-up Edge Density (ED) for each County 
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Figure 4.6 Built-up Euclidian Nearest Neighbor Mean Distance (ENN_MN) 
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CHAPTER V 

CONCLUSION 

5.1 Conclusion 

In this study, we demonstrated the use of landscape metrics to describe the 

thematic urban land cover change and enhance the information derived from a classic 

LULC study. There was an overall increase in the urban land cover with the highest rate 

occurring in the early years from 1973 to 1990, followed by decreasing rate in the 

following years (1990-2015). During the earlier years (1973-1986), the study area 

experienced high levels of fragmentation due to urban sprawl, and in later period (1990-

2015) fragmentation decreased. The urban land cover became more aggregate, which can 

be attributed to the “fill-in” effect. The Alabama counties, Mobile and Baldwin, 

experienced the highest rate of urban development per year in contrast with the 

Mississippi Counties. The increase of urban land cover mostly affected the Rangeland 

and Agriculture land covers, with Rangeland having a high negative and statistically 

significant correlation to the increase in urban land cover. The use of landscape metrics in 

conjunction with classic LULC study allows for a better understanding of the land cover 

change assessment. The outcome of this study can be incorporated in coastal 

development planning and serve as the primary evaluation of the Gulf Coast environment 

to help reduce degradation for this environmentally sensitive region. 
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5.2 Limitations 

Although great care was taken during the signature collection process for the 

supervised classification, the calculated accuracy of the classified maps was lower than 

expected. This accuracy problem made the change detection less capable causing 

misrepresentation in several scenes. For some of the scenes (1973 and 1980), there were 

few or no high-resolution aerial imagery to verify training sites accurately, and some 

newer images were used to do most of the accuracy point collection in conjunction with 

the actual scenes. The disparity in spatial resolution of the MSS scenes (60 m) and the 

non-MSS scenes (30 m) may also have contributed to lowering the change detection 

accuracy, especially for the urban classification type. There was some difficulty in 

interrupting some of the second level landscape metrics, which is a known problem in 

research dealing with landscape metrics and applying them to describe the development 

of urban land cover (Bhatta et al., 2010; Ji et al., 2006). Describing urban development 

can be more difficult due to the complexity of factors that result in land cover change, 

and especially in the Gulf Coast, a growing region with a variety of economic, social and 

political factors. Similarly, this region is affected by a variety of natural disasters of 

which may have different effects on the land cover types that are outside the scope of this 

study. 

Although the classification accuracy of this study met the standard for Anderson 

level I LULC classification requirements, better classification methods can be used to 

achieve high classification accuracy, such as using sub-pixel classification methods, and 

object-based classification. Using the data derived from this study, a refocus on a smaller 

scale to a city level or metropolitan level can give more insight into the urban 
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development of major cities within this region. Further statistical analysis of the 

landscape metrics can yield more insight into the distributions of other land covers that 

are in this study. 
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